
0*

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A246 070

SFEB 2019920'l13

D THESIS
INTEGRATED MICROWAVE AND INFRARED

PRECIPITATION ANALYSIS

by

Lisa E. Frailey

September, 1991

Thesis Advisor: Carlyle H. Wash

Approved for public release; distribution is unlimited

92 92-04002



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION I b. RESTRICTIVE MARKINGS
Unclsified '

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECi.ASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

1 55

6c. ADDRESS (City, State, andZIP Code) 7b. ADDRESS (City, State, andZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-6000

Sa. NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Program Element No. Pro'ect No IaS No. Work Unit Aocuon

11. TITLE (include Security Classification)

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, ay) IS. PAGE COUNT

Master's Thesis From To 1991. September 87
16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the US.
Government.
17. COSATI CODES 1B. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Precipitation, GOES IJR SSM/l. Microwave

19. ABSTRACT (continue on reverse if necessary and identify by block number)

GOES infrared (IR) data is intercompared with rain analyses from the SSMWi exponential rin algorithm for the purpose ofdetermining
thresbolds and statistics from IR imagery which delineate oceanic rain area. Data from ERICA cyclogenesis cases were evaluated.

Discriminant analysis was performed using IR mem cloud top temperature, standard deveiation and I zrois as discriminating variables.
Resulting functions separated ran from no-rain areas with average Probability of Detection (POD) and Percentage Error (ERR) scores of 0.68 and
0.30 for development data (0.62 and 0.37 for validation data). The scheme demonstrated little skill in discriminating rain categories beyond
rein/no-rain.

An IR threshold scheme was used to delineate rain/no-rain ares by optimizing a set ofevaluation statistics. Optimal thresholds attained a
predetermined POD level of0.60 whole minimizing percent misclassification error and 38W!1 - IR rain area diference. The scheme yielded
average POD and ERR scores of 0.64 and 0.28 with IR thresholds from 229 to 232 K.

Results for both the discrminant analysis and optimal threshold schemes compare favorably with previous studies. The use of the SSMJi rain
analyses with geostationary imagery allows reliable, frequent, large scale analysis of oceanic precipitation.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
McU.s,,AI.uM.,,E, 13 SAME AS PIPOW1 0 T1C USERS Unclassified

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c. OFFICE SYMBOL
Carlyle H. Wash (4081646-2295 MR/Wz

DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editiona are obsolete Unclassified



Approved for public release; distribution is unlimited.

Integrated Microwave and Infrared Precipitation Analysis

by

Lisa E. Frailey
Lieutenant, United States Navy

B.S., Pennsylvania State University, 1982

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN METEOROLOGY AND PHYSICAL OCEANOGRAPHY

from the

NAVAL POSTGRADUATE SCHOOL
September, 19 1

Author:

Approved by: T

Philip A. Durkee, Second Reader

Robert L. Haney, Chairman
Department of Meteorology

ii



ABSTRACT

GOES infrared (IR) data is intercompared with rain analyses from the SSM/I

exponential rain algorithm for the purpose of determining thresholds and statistics from

IR imagery which delineate oceanic rain area. Data from ERICA cyclogenesis cases

were evaluated.

Discriminant analysis was performed using IR mean cloud top temperature,

standard deviation and kurtosis as discriminating variables. Resulting functions separated

rain from no-rain areas with average Probability of Detection (POD) and Percentage

Error (ERR) scores of 0.68 and 0.30 for development data (0.62 and 0.37 for validation

data). The scheme demonstrated little skill in discriminating rain categories beyond

rain/no-rain.

An IR threshold scheme was used to delineate rain/no-rain areas by optimizing a

set of evaluation statistics. Optimal thresholds attained a predetermined POD level of

0.60 while minimizing percent misclassification error and SSM/I-IR rain area difference.

The scheme yielded average POD and ERR scores of 0.64 and 0.38 with IR thresholds

from 229 to 232 K.

Results for both the discriminant analysis and optimal threshold schemes compare

favorably with previous studies. The use of the SSM/I rain analyses with geostationary

imagery allows reliable, frequent, large scale analysis of oceanic precipitation.
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I. INTRODUCTION

The determination of rainfall over extensive areas is important, not only for long

range climatological studies, but also for real-time operational purposes. Satellite data

imagery allows vast areas to be studied, areas with previously limited or non-existent

observations. Of particular interest to naval operations is the determination of

precipitation areas in oceanic regions.

While geostationary visual (VIS) and infrared (IR) satellite coverage of oceanic

areas has been available since 1974, its use for precipitation analysis has been limited

since VIS and IR data sense cloud properties, not precipitation directly. However, the

recent development of precipitation algorithms utilizing satellite microwave data from

the operational Special Sensor Microwave/Imager (SSMI) yields direct oceanic

precipitation information available every 12 h from current and future Defense

Meteorological Satellite Program (DMSP) polar orbitting satellites.

The objective of this thesis is to intercompare IR data from the Geostationary

Operational Environmental Satellite (GOES) with DMSP SSM/1 precipitation analyses.

The intercomparison should allow the determination of IR thresholds and statistics which

delineate the rain area. These thresholds can be used for subsequent hourly rain

analyses until microwave verification data is again available, six or 12 h later. GOES

And SSMI data are currently used by the Navy, and a precipitation delineation scheme

utilizing these data types could readily be incorporated into an operational product.
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IR and microwave data from the Experiment on Rapidly Intensifying Cyclones

over the Atlantic (ERICA) will be used in this thesis. ERICA was conducted from

01 December 1988 to 28 February 1989 over the northwest North Atlantic Ocean.

Centering on the climatologically favored area for rapid cyclogenesis, it spanned an area

from 30N to 50N, 8OW to 50W. The objectives of ERICA (Hadlock and Kreitzberg

1988) were to: (1) understand the fundamental physical processes occurring in the

atmosphere during rapid intensification of cyclones at sea, (2) determine those physical

processes that need to be incorporated into dynamical prediction models through

efficient parameterizations, and (3) identify measurable precursors that must be

incorporated into the initial analysis for accurate and detailed operational model

predictions. ERICA data includes eight Intensive Observational Periods (IOP's) of 36

to 48 h duration. Each IOP covers the development of a rapid cyclogenesis event,

defined as an extratropical surface cylone whose central pressure fall averages at least

one mb/h for 24 h. ERICA measurements were made from aircraft, buoys, satellites,

soundings and radar. This variety of data makes ERICA storms an ideal test bed for

oceanic precipitation analysis.

Specific objectives of this thesis are:

1. Investigate differences in IR brightness temperature (TB) values between SSM/I-
determined raining and other non-raining clouds such as dense cirrus.

2. By optimizing selected statistical parameters, determine an IR T1 threshold which
delineates precipitation as determined by SSM/I data.
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A literature review of precipitation analysis methods using various combinations

of VIS, IR , radar and microwave data is presented in Chapter II. Chapter m details

how the ERICA IR and SSM/I data used in this analysis was obtained and prepared.

The initial analysis of localized areas within the ERICA storms is presented in Chapter

IV, followed by a discriminant analysis approach to precipitation delineation in Chapter

V. Chapter VI explores an IR thresholding scheme for precipitation analysis. A

summary with conclusions and recomnendations for future research and implementation

of these schemes is presented in Chapter VII.

3



H. SATELLITE PRECIPITATION ESTIMATION TECHNIQUES

A. VISUAL AND INFRARED METHODS

1. VIS and IR Overview

The estimation of rain with VIS and IR data is subjective, as precipitation

is not sensed directly. Rather, VIS and IR yield information about cloud thickness and

cloud top temperature, respectively. Cloud type is inferred from these values, and rain

area and rate further inferred from the cloud type. Four basic methods are currently

used to delineate rain areas with VIS and IR (Barrett and Martin 1981):

1. Cloud Indexing

2. Cloud Life History

3. Cloud Model

4. Bispectral

Cloud Indexing is the oldest method, and it is based on identifying the cloud types.

A standardized rain rate is then applied to each cloud type. With Cloud Life History,

rain rate is a function of the stage in the cloud's life cycle. Griffith et al. (1978) derived

a diagnostic method to estimate rainfall using this method. Stout et al. (1979) also

employed the Cloud Life History method. They examined the relationship between

radar-estimated rain rate and satellite-measured cloud area, focusing on the concept that

precipitation peaks while the cloud area is rapidly growing. The Life History method
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is a valuable research tool, but is not adequate for real-time application as it requires

tracking a cloud through its development before assigning a rain rate. Cloud Models

are being developed which incorporate cloud physics knowledge into the retrieval

process. These can use combinations of the other three methods, but are currently in

developmental stages and not available for operational use.

2. Bipectral Method

Bispectral methods intercompare VIS and IR data, where high VIS values

indicate thick, bright clouds and high IR values indicate cold cloud top temperatures

(Kidder and Vonder Haar, 1991). The first application of a bispectral method was

conducted by Reynolds and Vonder Haar (1976), where cloud heights and amounts were

determined using simultaneous VIS and IR satellite data. On a two axis (VIS and IR)

plot, stratus clouds appear as bright and warm, while convective rain clouds are

clustered in the cold, bright region. Threshold values for both axes can be determined

to differentiate cloud types. Bispectral methods, because of their ease and consistently

good results, are quite suitable for real-time operational use.

A bivariate frequency distribution to differentiate raining/non-raining clouds was

developed by Lovejoy and Austin (1979a). Their use of radar observations to train a

technique to recognize precipitationg clouds is termed the RAINSAT approach. Pixels

were assigned to either "Rain" or "No Rain" VIS/IR histograms, based on Canadian

ground and shipboard radar data. The plots were combined to yield a bispectral (VIS/IR)

frequency plot of precipitation probabilities (rain pixels/total pixels) for each VIS/IR
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value combination. Figure 1 illustrates this plot, with the resulting optimum

precipitation boundary. This boundary is similar to a threshold, but is not limited to

values parallel to the axes, and therefore allows greater flexibility. Rain maps for

PRECIP PROBABILITY(%

Sas to to so Is so 0 0 6 00 @ 66 6 6 6 a 6

* 0 0 0 6 0 I So of is a" 0 0 5 0 a 6 0
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* 44 6 So IS I I see165 04666 0 of 6 0 9 1
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so I To got s

Fig. 1 Precipitation probabilities derived from rain/no-Rain histograms. The
boundary separates raining from non-raining pixels based on an optimum
probability. (Lovejoy and Austin 1979)
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geographical areas were then constructed by applying the VIS and IR values specified

by the optimal boundary and minimizing a misclassification error function. The authors

found that while VIS data gave more information than IR, IR data was useful in

convective cloud studies. A bispectral method was determined more accurate than a

single channel method. Another finding was that actual rain area was approximately 1/4

the size of the cloud cover.

Lovejoy and Austin (1979b) investigated the sources of error in bispectral rain

estimation, determining the amount of error due to errors in rain area determination

versus error in rain rate algorithms. From the magnitudes of error found, they

concluded that current VIS and IR schemes were good for determining rain areas, but

not rain rates.

Tsonis and Isaac (1985) used a two part method to determine rain area from

VIS and IR satellite data. The first part was to differentiate raining from non-raining

clouds using a cluster analysis. Results of a bivariate frequency distribution were

plotted on a scatter diagram, and divided into three clusters. Cluster I consists of points

associated with clear skies and nonraining clouds, while Cluster 2 consists of points

corresponding to nonraining low-level overcast, fog and haze. Cluster 3 consists of

points assigned mainly to raining clouds, but includes some cirrus. Decision boundaries

to separate the clusters were drawn by intersecting a point equidistant from the three

cluster centers. Results are illustrated in Figure 2.
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Fig. 2 Decision boundaries separate clusters of VIS and IR frequency peaks.
(Tsonis and Isaac 1985)

The second part of Tsonis and Isaac's method was to determine a specific VIS

threshold which would delineate the rain area from Cluster 3. Using land-based radar

as ground truth, a VIS threshold was established which gave a satellite/radar rain area

near unity. The authors outlined two evaluation parameters:
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1. Probability of Detection: POD = (satellite correctly classified rain area) / (radar
rain area)
2. False Alarm Ratio: FAR = (satellite incorrectly classified rain area) / (satellite

rain area)

Their VIS threshold yielded a POD of 0.66 and an FAR of 0.37. Tsonis and Isaac

concluded that while most of the rain area information was derived from VIS data, for

cases of strong convection, a single IR threshold could accurately delineate rain area.

The authors' method gave best results for convective, versus stratiform, cases.

Tsonis (1988) evaluated a simpler rain area delineation approach which used a

single VIS or IR threshold. Compared to more complicated schemes, this single

threshold approach performed quite adequately. Optimal thresholds yielded POD and

FAR scores of 0.62 and 0.38 (VIS threshold) and 0.60 and 0.40 (IR threshold).

Tsonis concludes that the simplicity and accuracy yielded by a single threshold

technique may make it useful for delineating precipitation area on large scales.

Negri and Adler (1987a) used a "Grid Cell" approach to estimate rain from VIS

and IR data. Focusing on subtropical convective systems, their approach explored the

relationship between cloudy grid cells (determined by VIS/IR threshold values) and the

variability of the precipitation within. Unlike the methods of Lovejoy and Austin or

Tsonis and Isaac, JR, versus VIS, parameters were used to explain most of the

variability. The authors found that while high rainrates required low cloud top

temperatures, these low cloud top temperatures did not necessarily yield high rainrates.
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The authors concluded that that on the scales used, useful and accurate estimates beyond

rain/no-rain discrimination were unlikely.

Negri and Adler (1987b) describes a "Cloud Definition" approach to precipitation

delineation, where cloud area was defined by an IR threshold. The authors sought to

maximie a Critical Success Index (CSI), incorporating POD and FAR (Appendix A).

They found a good correlation between IR-determined cloud area and rain area, but

limited usefulness of VIS data.

Results of the "Grid Cell" and "Cloud Definition" approaches were used to

formulate the Convective-Stratiform Technique (CST) by Adler and Negri (1988). This

method defines convective cores by their IR temperature minima and strong temperature

gradient. Rainrate and rain area are assigned to the cores as a function of IR cloud top

temperature. A stratiform rain algorithm, based on the mode temperature of

thunderstorm anvils, completes the convective/stratiform rain estimation.

While Negri and Adler focused on IR values to determine precipitation in the

subtropics, King (1990) evaluated the relative importance of VIS and IR data in

determining midlatitude rainrates. Using the Lovejoy and Austin (1979a) RAINSAT

approach, King compared VIS and IR GOES data with coincident radar rainrate data.

He concluded that both rainrate and fractional rain volume showed a stronger

relationship with VIS count than with IR count. King's results enabled the construction

of probability of rain and rainrate contours based on bispectral VIS and IR data.
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Further expanding on the bispectral concept, Neu (1990) evaluated an automated

multispectral (AVHRR VIS, IR, and IR split-window) nephanalysis model, with the goal

of cloud type classification on a multispectral axis. He verified the automated results

with a subjective cloud analysis consensus, and was able to successfully distinguish 11

cloud types. His strongest results were in determining precipitation clouds, showing that

multispectral analysis could yield fast, accurate results in cloud type determination.

These studies show that precipitation areas can be delineated using VIS

and/or IR satellite data. Such data is readily available from geostationary satellites,

yielding continuous, real-time coverage of extensive global areas. The methods

described generally utilized surface-based radar as ground truth, and focused on areas

close to land.

B. MICROWAVE

Like radar, microwave remote sensing is a method of directly sensing precipitation,

either through absorption/emission or scattering of radiation by precipitation. Unlike the

surface-based radar used in the previous studies, however, satellite-based microwave

sensors give global coverage from a platform similar to satellite VIS and IR sensors.

Figure 3 depicts the nonlinear relationship of brightness temperature (T) to rainrate

over ocean and land backgrounds for three microwave frequencies (Kidder and Vonder

Haar 1990). TI - rainrate relationships have been used by several authors, including

Wilheit and Chang (1980) and Spencer et al. (1989), to estimate rainrate.
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Fig. 3 Brightness temperatures versus rainrates for 3 microwave frequencies.
(Kidder and Vonder Haar 1990)

Cataldo (1990) evaluated several mit 'owave main algorithms, determining that the

initial SSM/I Hughes Aircraft Company (HAC) algorithm was inadequate for

determining rain rates. He found that using T. from the horizontally polarized 37 GHz

channel (37H) yielded the best rainrate results. 37H uses an absorption regime, is

sensitive to low rainrates and has little noise interference. For the 37H channel, Cataldo,
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used a threshold temperature of 190 K as a rain/no-rain cutoff, with increasingly warmer

temperatures to 255 K for heavier rainrates. Using coastal radar and ship reports as

ground trth, he concluded that satellite-based microwave data could successfully

delineate oceanic rain areas, and could further define rainrates.

Almario (1991) examined a more recently developed exponential rain algorithm

which incorporates data from multiple SSM/I channels (Olson et al., 1991). Comparing

the SSM/A results with aircraft and ground-based radar observations for several ERICA

storms, Almario found that the exponential algorithm produced successful results in

detecting oceanic raim/no rain areas and rain intensity. Results using the exponential

algorithm were found to be far superior to those found using either the HAC algorithm

or 37H channel. Comparisons with GOES IR imagery revealed that most of the cold

cloud top (heavy convection) regions coincided with maximum rainrates in the SSM/

analyses.

There are several potential error sources inherent in microwave rainfall

determination. First, microwave resolution is poor. The resolution for the 37 GHz

channel is 32 km - significantly less than for VIS and JR channels. The large footprint

characteristic of microwave radiometers introduces a problem with beam-filling and

nonlinearity. The radiometer averages the TI, over this large footprint. However, this

average does not necessarily yield a representative mean rainrate because of the

nonlinearity of Tj in rainrate. This beam-filling problem generally results in an

underestimation of the mean rainrate within the footprint.
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Notable success has been obtained using improved microwave rain algorithms to

delineate rain areas and rainrates. With microwave data, accurate rain analyses can be

attained at 12 h intervals over large land and ocean areas. Thus far, surface radar has

been used as ground truth for the development of VIS and IR precipitation analysis

schemes. With coverage far exceeding that of surface radar, SSM/1 rain analyses are

logical candidates to use as ground truth for oceanic studies. This utilization should

significantly improve precipitation analysis over oceanic areas, where conventional

verification data is notably sparse.
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Ell. DATA

The choice of data to be analyzed was based primarily on the availability of

coincident digital GOES IR and DMSP SSM/I images which covered well-developed

ERICA storms. Because of the time of day and consequent sun angle, there was no

adequate GOES VIS imagery for the time periods examined. Table I summarizes the

data sets used in this analysis, referred to as Cases A, B, and C; all times are Universal

Coordinate Time. Synoptic descriptions of each case follow in Chaiter IV.

Table I ERICA STORMS STUDIED

Time of Image (UTC)
Case lOP Date GE

GOES SSM/A

A 2 13 Dec 88 0901 0903

B 2 13 Dec 88 2301 2257

C 4 4 Jan 89 2101 2147

A. IR IMAGERY

IR (10.5-12.5 pm) imagery is obtained from the Visible and Infrared Spin Scan

Radiometer (VISSR) flown aboard the GOES-East satellite. The spatial resolution for

each pixel at nadir is 8 x 4 km (8 km resolution north-south and 4 km east-west), where

the 4 km resolution is obtained by oversampling in the east-west direction. IR imagery
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is displayed on the NPS IDEA Lab as 512 x 512 pixel images. The intensity range of

the IR pixels is 0 - 255 counts. Values of IR count are easily converted to equivalent

brightness temperatures (TB) using a standard IR calibration table (Ensor 1978).

B. SSMI IMAGERY

SSM/I data are obtained from the polar orbiting DMSP satellite. Vertically and

horizontally polarized 19, 35 and 85 GIZ data channels are available on the SSM/I

sensor, along with a vertically polarized 22 GHz channeL Resolution is proportional to

the channel's frequency, and ranges from 13 kIn for the 85 GHz channel to 50 km for

the 19 GHz channel. Brightness temperatures from these seven channels (referred to as

19V, 19K 22V, 37V, 37-, 85V and 85H) are incorporated into the exponential rain rate

algorithm and screening logic developed by Olson et al. (1991). The algorithm used is

specific for oceanic rainfall, and its accuracy when applied to ERICA storms was

explored and verified by Almario (1991). Both Olson (1991) and Almario (1991) found

that the rainrates derived from the SSM/ exponential algorithm corresponded well with

radar-derived rainrates, and were superior to rainrates derived from previous algorithms.

However, validation of the exponential algorithm has thus far been qualitative, and no

accuracy figures have yet been established. The results of the exponential algorithm are

displayed in a 512 x 512 pixel image as rainrates from 0 to 25 mm/h. Because of the

multichannel incorporation, resolution of the image is reduced to the coarsest of the

seven channels, 50 km.
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C. IMAGE RECTIFICATION

IR and SSM/I images were originally displayed in their natural coordinate systems

for processing convenience. However, in order to compare the two image types, they

must be displayed using the same projection. Image rectification, also known as "real

world image mapping," is a solution to this problem (Bernstein, 1983). IR and SSM/I

images for each case were rectified to a common Cylindrical Equidistant (CED)

projection. Images were navigated, and latitudes/longitudes were specified so that the

IR image covered the same geographic area as the corresponding SSM/1 image. Images

could then be intercompared, pixel by pixel. A landmasking routine was also applied

to enable easy discrimination between land and ocean areas when searching the data

pixels.

The area represented by each rectified pixel is dependent on the size of the

geographic area specified. For Cases A and B, each pixel represents approximately 4.5

x 4.5 km, while Case C pixels cover about 6 x 6 km. Actual image resolution, however,

is unchanged from the original data, and remains at 8 x 4 km for ER and 50 x 50 km

for SSM/I images. Because of the discrete sampling performed in the image rectification

process, gaps can occur when high resolution (IR) images are remapped. These gaps are

filled using a pixel interpolation method. For low resolution images (SSM/I), only one

image pixel is used for each screen pixel, and no interpolation is required.
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Rectified IR and SSM/I images constitute the data base for the analyses to be

performed in this study. Navigation and remapping to equivalent projection allows pixel

by pixel intercomparison for the precipitation analyses described in the following

chapters.
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IV. LOCALIZED RAIN/NO-RAIN STUDIES OF ERICA lOP 2 AND 4

Selected areas of cold GOES IR temperature, determined by SSM/I analysis to be

either raining or nonraining, were examined to determine if any information existed

within the IR data that could successfully discriminate rain from no-rain/cirrus for Cases

A, B, and C (Table I).

The SSM/1 exponential rainrate algorithm was applied to each case, yielding a

display of rain area and rainrates. This display was used as ground truth irt choosing 20

x 20 pixel areas, (referred to as "cloud boxes") from the GOES IR imagery. The cloud

boxes were positioned so that the rainrates within each box were as homogeneous as

possible. A representative collection of no rain (cirrus), light (1-2 mm/h), moderate (2-4

mm/h), and heavy (>4 mm/h) rain areas was selected. GRAFSTAT statistical analysis

software (Burkland et al. 1990) was used to evaluate the 20 x I0 pixel IR data arrays.

A histogram and set of sample statistics were generated for each cloud box to investigate

cloud top temperature differences between the rain and no-rain areas.

A. CASE A: 13/0901 DECEMBER 1988

Case A GOES and SSM/I imagery (Figures 4 and 5) describes the first ot two

storm systems during IOP 2. The first upper-air trough moved offshore of the Geo-gia -

South Carolina coast shortly after 13/0000. A surface cyclone developed with this

system, deepened modestly for the initial 12 h period and moved eastward along 30N.
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Fig. 4 Case A: 13/0903 December 1988 SSM/I oceanic exponential rainrate analysis,
mm/h.
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Fig. 5 Case A: 13/0901 December 1988 GOES IR imagery. Cirrus (C) and rain (R)

boxes annotated.
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By the time of this SSM/I pass, the cyclone had developed into a commna-shaped

cloud. Its 1004 mb storm center is centered near 33N 68W. (Hartnett et al. 1989)

The SSM/I exponential rain algorithm analysis results are given by Figure 4, with

rainrates coded by mm/h. Heaviest precipitation (15 mm/h) lies east of the cyclone

center, and is surmnded by relatively concentric areas of decreasing rainrate. A band

of moderate and heavy rainfall extends east of the system center associated with the

warm front, while a second band (cold front) extends southwest to the Bahama Islands.

Figure 5 presents the concurrent GOES IR imagery. While the GOES IR overall cloud

area and shape coincide with the SSM/1-determined rain area, cirrus is evident north of

the primary rain area. The cloud boxes analyzed are indicated, and labeled as "C"

(cirrus) or "R" (rain). The locations of the boxes were chosen to study cloud top

temperatures between the cirrus area and the raining area to the south.

An analysis of the resulting sample statistics (Table II) and distribution histograms

(Figure 6) for the cloud boxes reveals clear differences between the rain and no-rain

samples. The no-rain (cinus) samples resemble each other closely, both in their

distribution shape and in the IR mea (185.39) (232.5 K) and standard deviation (2.97).

The rain samples are characterized by a higher mean IR count (197.71), colder cloud top

temperature (220.8 K) and generally lower standard deviation. Rain samples, however,

are not homogeneous, but appear to vary according to rainrate. Samples R I and R2

represent light and moderate ramrates, and exhibit high mean (203.17) (214.8 K) and

low standard deviation (1.07) values. These are in sharp contrast with the lower mean
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Table H CASE A SAMPLE STATISTICS

Box Rainrate Mean Std.Dev. Kurtosis

C1 0 185.43 2.35 2.38
C2 0 183.15 3.54 4.42
C3 0 184.61 1.75 2.90
C4 0 188.37 4.22 5.12

Mean C 185.39 2.97 3.71

RI Lt/Mod 203.34 1.12 3.08
R2 Li 203.01 1.02 4.91
R3 Hvy 188.00 12.18 2.06
R4 Hvy 192.27 4.34 2.15
R5 Hvy 201.92 1.17 3.86

Mean R 197.71 3.97 3.21

(194.06) (223.9 K) and higher standard deviation (5.89) values corresponding to the high

rainrate samples R3, R4 and R5.

Analysis of color-enhanced IR cloud top temperatures (not shown) reveals that

cloud boxes with light and moderate rainrates (RI and R2) coincide with areas of

uniform cloud top temperatures, as suggested by the low standard deviation values.

While R5 is categorized as heavy rain, the SSM/I imagery shows that the area contains

several rainrate levels ranging from 5 to 11 mm/h, and appears to be a transition area

from moderate to heavy convective rain areas. This may explain why the statistics for

R5 more closely resemble those of the light/moderate rain boxes than of the heaviest

rain boxes. Cloud boxes R4 and R5 are represented in the enhanced GOES imagery as

areas of significant cloud top temperature variability, with strong cloud top temperature
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gradients. Such a cloud top temperature pattern is consistent with the towering cumulus

(and compensating descent areas) associated with heavy convective rain. Kurtosis

values were evaluated, but appear to have no discernible pattern in differentiating

rain/no-rain areas.

It is apparent from the analysis that mean IR count and standard deviation can be

used to differentiate rain from no-rain areas for this case. Notable points are the

Gaussian distribution of cirrus IR values and the variations of rain IR values with

rainrate.

B. CASE B: 13/2301 DECEMBER 1988

Case B satellite imagery (Figures 7 and 8) depict the second storm system in lOP

2. This second, stronger upper-air trough with associated upper-level jet streak moved

offshore from Virginia and North Carolina at about 13/1200. A surface trough

developed northward from the Gulf Stream off Cape Hatteras towards Long Island and

southern New England. Central pressure of the system at 13/2300 was approximately

995 mb, with rapid intensification to occur during the next 12 h. (Hartnett et al. 1989)

Cirrus and rain cloud boxes were chosen on the basis of concurrent SSM/I

precipitation analysis (Figure 7), and are labeled on the GOES IR imagery (Figure 8).

While SSM/I rain area is within the confines of the GOES high cloud area, extensive

cirrus cover is apparent both east and north of the system center, probably blown off

from the storm center by the upper-level jet. Again, cloud boxes were chosen to study

cloud top temperature differences between the downstream cirrus and rain areas.
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Fig. 7 As in Fig. 4, except Case B: 13/2257 December 1988.
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Fig. 8 As in Fig. 5, except Case B: 13/2301 December 1988.
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The heaviest rain area (11-13 mm/h) is centered at 37N 71W. Also seen on this

imagery is a trailing frontal band from the storm system analyzed in Case A.

Table III CASE B SAMPLE STATISTICS

Box Rainrate Mean StdLDev. Kurtosis

C1 0 188.54 3.34 3.43
C2 0 194.65 1.84 3.52
C3 0 191.76 6.58 10.06
C4 0 191.50 2.53 2.74

Mean C 191.61 3.57 4.93

RI Lt 196.10 0.88 2.48
R2 UA 186.64 5.41 3.31
R3 U/Mod 182.34 3.73 3.06
R4 Hvy 195.43 2.02 2.35
R5 Hvy 186.15 3.51 2.01

Mean R 189.33 3.11 2.64

Sample statistics for Case B are presented by Table HI and distribution histograms

by Figure 9. In contrast to the results in Case A, no large temperature differences are

apparent between the cirrus and rain boxes for this case. In fact, the mean for cirrus

cloud boxes is slightly colder (191.61) (226.4 K) than the mean for rain boxes (189.33)

(228.7 K). The imagery constraints allowed only analysis of cirrus boxes from the

nonteater quadrant of Case B's cyclone system, whereas cirrus boxes from the

northwest quadrant of Case A's system were analyzed.
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Figure 9 shows that, like Case A, the cirrus boxes have a more Gaussian distribution

than the rain boxes. However, a wide range of standard deviation and kurtosis values

is present for both groups. This case illustrates the large differences that can exist for

different cases.

C. CASE C: 4/2101 JANUARY 1989

Case C satellite imagery (Figures 10 and 11) illustrates precipitation and cloud

structure of the lOP 4 cyclone, the deepest extratropical cyclone of the experiment

(Hartnett et al. 1989). The system first appeared as several low centers off the North

Carolina coast, then deepened into a powerful, single center cyclone when a strong

upper-air disturbance reached the coastline at about 4X)00. Rapid intensification

occurred between 4/0900 and 4/1500, with an estimated deepening rate of 24 mb/6 h.

The cyclone continued to develop as it moved northeast towards Newfoundland. At the

time of Case C imagery, the cyclone is centered at 39N 59W, with a central pressure

of 950 mb. This case differs from the others in that the system is mature, vice incipient,

with pronounced frontal structure at the time of the imagery.

The 4/2101 GOES IR imagery (Figure 11) includes the labeled cirrus and rain

cloud boxes to be statistically analyzed. Again, these boxes were chosen on the basis of

SSM/l determined rain/no-rain areas (Figure 10). The 4/2147 SSM/l imagery for this

case was not concurrent with GOES, but differs by 46 min. The time difference is not

considered significant for this analysis because the size and location of the cloud boxes,

well buffered by surrounding areas of similar SSM/I and IR values, more than accounts
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Fig. 10 As in Fig. 4, except Case C: 4/2147 January 1989.
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Fig. 11 As in Fig. 5, except Case C: 4/2101 Januqaz 1989.

32



for any movement or development of the cyclone system. Restricted by swath width,

the SSM/I imagery shows the comma tail and NE area of the comma head, but not the

cyclone center.

Table IV CASE C SAMPLE STATISTICS

Box Rainrate Mean Std.Dev. Kurtosis

C1 0 185.83 5.14 3.90
C2 0 186.76 4.86 2.78

Mean C 186.30 5.00 3.34

RI IA 194.97 2.81 2.75
R2 UA 186.87 3.46 2.66
R3 U/Mod 197.14 3.15 3.11
R4 Hvy 186.45 5.13 3.95
R5 Hvy 192.21 3.95 1.97

Mean R 191.53 3.70 2.89

Distribution histograms are depicted by Figure 12, and sample statistics by Table

IV. As in Case A, mean IR value is the parameter which most strongly discriminates

cirrus from rain samples. Cirrus samples exhibit a mean IR value of 186.30, compared

to a value of 191.53 attributed to rain samples. While distinguishable, this difference

is not as significant as that shown in Case A. The histograms show a strong distribution

similarity between the two cirrus boxes. And while the distributions for R1, R3, and

R5 are similar, there is no clear grouping of values for light, moderate, or heavy rain.

Standard deviation values are generally less for rain samples than cirrus samples, and

again, kurtosis values show no consistent differences.
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D. OVERALL RESULTS

Cases A, B, and C documented variations between non-raining and raining cloud

areas of several cyclones. The cloud boxes describe the distribution of IR values within

each area and the variables mean, standard deviation, and kurtosis.

In general, mean IR count proved to be the strongest delimiter of rain from cirrus.

In Cases A and C, rain box means were notably higher than cirrus box means. This was

not evident in Case B, however, where cirrus means were slightly higher than rain

means. Standard deviation also appeared to have some value in discriminating rain from

cirrus boxes. Overall, light/moderate rain exhibited the lowest values, cirrus the

intermediate values, and heavy convective rain the highest values of standard deviation.

These findings are somewhat in accord with those of Adler and Negri (1988). In

discerning cirrus areas from thunderstorm (strong convection) areas, Adler and Negri

attributed warmer cloud top temperatures and lower standard deviation values to cirrus

areas. Because no description of neighboring light/moderate rain areas was given, it is

unclear if discrimination between cirrus and non-convective rain is possible with this

method. Adler and Negri's work was based on tropical convective systems, whereas the

ERICA storms were mid latitude cyclones.

Kurtosis values were examined as a means to describe the peakedness of the

distribution histograms. This parameter, however, demonstrated no consistent pattern in

separating cirrus from rain.

35



Synoptically, a certain precipitation pattern is evident from the SSMI precipitation

analyses. Heaviest rain areas, associated with strong convection, lie near the cyclone

center, and are also evident along frontal bands. These areas are usually ringed by areas

of moderate, then light rainfall. From the analyses above, the light/moderate rainfall can

be reasonably identified in the 1P by high mean and low standard

deviation. Heavy convective rainfall is not so readily identified in the IR. However,

areas central to the cyclone ringed by light/moderate rain areas which exhibit "ragged"

IR values (lower mean, high standard deviation) can realistically be presumed to be

convective rain. Cirrus cover, then, appears to be the limiting factor in using IR data

to identify rain areas. Less accuracy can be expected for IR prediction schemes applied

to cases with widespread cirrus blowoff. Cirrus identification could be achieved by the

incorporation of data from VIS (Lovejoy and Austin 1979a) or split-window I channels

(Neu 1990) into the scheme.

The analyses above were based on a limited number of hand-selected cloud boxes.

While the results suggest that the IR value mean and standard deviation may be used

to discriminate rain from no rain areas, the number and selective choice of sample cloud

boxes do not yield statistically significant results. The following chapter discusses the

logical extension of this analysis, where a large number of smaller cloud boxes,

systematically chosen from the satellite imagery, is analyzed using discriminant analysis

techniques.
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V. DISCRIMINANT ANALYSIS APPROACH

The preliminary analyses of the cloud boxes in Chapter IV indicated that IR mean

and standard deviation could discriminate rain from no-rain areas. A discriminant

analysis was performed to statistically determine if these variables could be used over

the entire IR image to classify precipitation.

A. DISCRIMINANT ANALYSIS THEORY

Discriminant analysis is a statistical procedure for identifying the boundaries

between groups in terms of the variable characteristics that distinguish one group from

another. The procedure is used to classify events by finding the combination of

variables that best predicts the category or group to which a case belongs. For this

analysis, events (10 x 10 pixel IR cloud areas) will be classified into categories (rain or

no-rain) on the basis of three variables (ZR mean, standard deviation, and kurtosis).

The simplest and most commonly used method is Fisher's linear discriminant

analysis (Fisher 1936). This method finds the coefficients a1, a2, and a3 so that the linear

discriminant scores,

D = a1X1 + aX 2 + a3 X3

for each group are maximally separated. For this analysis, the variables represented by

X1 , X2, and X3 are mean, standard deviation, and kurtosis. Because the population is
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partitioned into only two groups (rain and no-rain), a single discriminant function is

sufficient for classification.

It is possible to adjust the distance criterion to account for prior information about

the likelihood of an event (prior probability) and for unequal misclassification costs. If

a particular misclassification error is especially undesireable (eg. over-prediction vs.

under-prediction of rain area), then a higher penalty for that error would be incorporated

into the discriminant function. In order to compare the results to others, the

discriminant functions in this study are computed assuming uniform prior probabilities

and equal misclassification costs. That is, an area has an equal probability of being

classified as rain or no-rain, and misclassification in either direction carries the same

penalty.

Discriminant functions are determined from a data set termed "development data."

Cross-validation is a method of testing the discriminat (or classification) function on

an independent data set, termed "validation data."

B. PROCEDURE

For each case (A, B, and C), remapped SSMI and IR imagery was divided into

10 x 10 pixel boxes. The NPS IDEA Lab was used to display the imagery and select

a data set of 10 x 10 boxes which meet all the following criteria:

1. Area is oceanic.

2. SSM/I analysis yields either no-rain (0 rain pixels) or rain (at least 70% raining
pixels). Thus, rain border areas are eliminated.
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3. All GOES IR pixels within a box describe mid to high cloud top temperatures (IR

count at least 153, 253.5 K or colder, after Negri and Adler 1988).

A data sample set of 166 boxes was obtained for Case A, 124 boxes for Case B, and

176 for Case C. Computational efficiency is increased by restricting the analysis to

areas consisting of mid to high clouds, where a high probability of rain exists. Little

SSM/ rain was associated with cloud top temperatures warmer than 253 K for these

ERICA oceanic storms, where areas of light (1-2 mm/h) post-frontal and stratiform rain

were sparse. The exclusion of clear sky and low cloud areas, where rain/no-rain

delineation is inherently simple, does reduce the statistical success of the scheme.

For each sample box, the SSM/I-deternined rain/no-rain category was recorded

for use as ground truth. IR values were evaluated, and the mean, standard deviation and

kurtosis determined for each box. Table V presents a synopsis of the data used in the

discriminam analysis procedure. Mean values of each of the three variables are shown

for the rain and no-rain categories. In all three cases, little difference is seen in standard

deviation and kurtosis values. That is, the standard deviation for each of the two

variables exceeds the difference between the actual standard deviation and kurtosis

means for the rain and no-rain categories. Values of mean show the greatest variation

between rain and no-rain samples, indicating that the IR temperature itself may be the

strongest variable for classification purposes.

One way to visualize the distribution or separation of the rain/no- rain categories

in terms of the discriminating variables is with a scatterplot. Figure 13(a) presents such
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Table V CLASSIFICATION VARIABLES. Mean values for each of the rain/no rain
classification variables are indicated.

Case SSM/I No. of Mean Std. Kurtosis
Category Samples Deviation 1___

Rain 116 194.82 3.40 3.46
A No Rain 50 185.32 3.15 3.29

Rain 77 188.88 2.15 3.29
B No Rain 47 189.57 2.43 3.51

Rain 88 192.13 3.35 3.16
No Rain 88 184.84 3.85 3.60

a plot, illustrating Case A's rain/no-rain distribution as a function of all three variables.

"1" and "2" represent no-rain and rain categories, respectively. The plot suggests the

separation of the two categories, primarily along the axis given by the IR mean. Figure

13(b) is a two dimensional plot which shows the separation of the rain/no-rain categories

as a function of two variables. Again, IR mean is the strongest discriminating variable.

However, this plot reveals a significant role of standard deviation in the separation of

rain/no-rain, particularly where IR mean values range from 180 to 194 (238-224 K). In

this range, rain areas exhibit higher standard deviation values than no-rain areas. A

similar observation was made by Adler and Negri (1988), who found that at intermediate

temperatures (235-215 K), thunderstorm areas had a tighter gradient around their

temperature minima than did cirrus areas. A measure of standard deviation, this gradient

was termed the "slope parameter" by Negri and Adler.
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While the scatterplots graphically indicate separation of the rain/no-rain categories,

the role of discriminant analysis is to quantify that separation in terms of the three

variables. Development and validation data sets were prepared in order to determine

and test the discriminat functions. One fourth of the samples from each data set was

randomly withheld for use as validation data, while the remaining three fourths

constituted the development data. Using Statgraphics 4.0 PC software, linear

dtanalysis was performed on each case's development data. SSMI rain/no-

rain category was the "classification factor," and IR value mean, standard deviation and

kurtosis constituted the "classification variables." Uniform prior probabilities were

assumed. The analyses determined a discriminant function for each case, classifying the

development data accordingly. Table VI illustrates the success of this classification,

showing percentages of correctly classified categories. Cross-validation was performed

by applying the minant functions to the validation data sets, and events were

classified with the success rates noted in Table VI.

C. CLASSIFICATION RESULTS

1. Rain I No-Rain Classfication

As was evident in the previous chapter's cloud box study and the scatterplots

shown in Figure 13, Case A shows reasonably clear separation between rain and no-rain

samples. Rain boxes were correctly identified 78% of the time. This equates to POD

and FAR scores (Tsonis and Isaac 1985) of 0.78 and 0.09, respectively (a perfect
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Table VI LINEAR DISCRIMINANT ANALYSIS RESULTS. Results indicate
percentages of categories correctly identified by the discriminant function.

Case Category Development Data Validation Data
(% Correct) (% Correct)

Rain 79.54 78.57
No Rain 81.58 83.33

Rain 50.85 50.00
B No Rain 70.59 53.84

Rain 73.24 58.82
C No Rain 69.23 56.52

scheme yields POD = 1 and FAR = 0). There is little difference between the scores

obtained from the development and validation data, indicating that the discriminant

function is valid for independent data. Operationally, this suggests that a classification

function determined for coincident SSM/I and GOES satellite images is applicable to

subsequent GOES images.

Scores for Case B indicate that the discriminant function has little skill in

classifying rain samples. Success rates near 50% are no better than random choices.

Scores for classification of no-rain samples are reasonable for development data, but

decrease to near-random for validation data. The previous chapter's cloud box study

revealed the mean IR value of the cirrus boxes to be slightly higher than that of the rain

boxes. This observation is confirmed in this more encompassing analysis (Table V).

Considering the relatively large variance about the mean for the variables IR mean,

standard deviation and kurtosis, little difference is seen between the rain and no-rain
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values for any of the three classification variables. This suggests a low success rate for

any discriminant function applied to this case.

Case C scores show reasonable skill in classification of development rain and no-

rain data samples. Rain classification scores translate to POD and FAR scores of 0.73

and 0.30, respectively. However, skill scores decrease significantly when the validation

data is used, indicating that the classification scheme has less validity beyond the

coincident SSM/I and GOES data set.

For this analysis, the three classification variables mean, standard deviation, and

kurtosis were incorporated into the discriminant functions. Because the value of kurtosis

as a classification factor was in question, discriminant functions were then determined

using combinations of two of the three variables listed (discriminant analysis requires

at least two variables). Classification results from these various functions indicate very

limited value of kurtosis in rain/no-rain discrimination. Confirming the implications of

Table V, IR mean is, by far, the strongest classification variable. Standard deviation

also is of value, but to a lesser extent. Similar observations were made by O'Sullivan

et al. (1990), who tested up to 16 first and second order image statistics as

discriminating variables for precipitation estimation. They found their best results when

using a simple model incorporating only the mean and standard deviation. For

operational efficiency, then, discriminant analysis for rain/no-rain classification should

be performed using only IR mean and standard deviation. The dominant role of the IR
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mean cloud top temperature in rain/no-rain classification indicates that an even simpler

method using only IR count, may yield similar scores. Such a method is explored in

Chapter VI.

2. Further Division of Rain Categories

The classification results shown in Table VI indicate that discriminant analysis can

be used to classify rain and no-rain events, with resultant skill levels dependent on the

case. Chapter IV's cloud study indicated, for Case A, that categories of rain intensity

might also be identified. Several authors have attempted, with varying success, to

expand their rain/no-rain delineation schemes to classify rain intensity categories. Negri

and Adler (1987a) found that useful, accurate rainfall estimates beyond raiI/no-rain

discrimination were unlikely with their IR technique. However, O'Sullivan et al. (1990)

found moderate success in classifying light and moderate/heavy rainfall with an IR/VIS

scheme. Most of the studies worked with over-land precipitation, using radar as ground

truth. Here, the possibility of rain intensity classification for oceanic areas using

microwave ground truth is explored.

Data samples for each case were analyzed by the SSM/I exponential algorithm to

be either no-rain (<1 mrm/h), light (1-2 mnm/h), moderate (2-4 mm/h), or heavy rain (>4

mm/h). Again using the three IR variables with uniform prior probabilities and equal

misclassification costs, discriminant functions were determined. The classification

results, averaged for Cases A, B, and C, are presented in Table VII.
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Table VII RAIN INTENSITY CLASSIFICATION RESULTS. Results indicate
averaged (Cases A, B and C) percentages of rain categories identified by the
discriminant functions. Shaded boxes are categories correctly classified.

IR Predicted

No Rain Light Moderate Heavy

No Rain SL , 15.8 16.8 16.3
SSM/I

Observed Light 19.9 .... 33.2 29.7

Moderate 11.4 20.8 333 34.6

Heavy 14.6 12.2 25.4 47.8

The effect of furder dividing the rain categories is to significantly reduce the skill

scores for all categories. While no-rain identification is achieved with reasonable (but

reduced) skill for Cases A and C, 85% of Case B's nonraining events are misclassified

as rain. Table VII's shaded boxes show percent correct classification of rain intensity

categories, which ranges from 17.1 to 51.0. The no-rain and heavy rain categories are

the most successfully classified, while light and moderate rain are more often than not

misclassified. Results of this analysis indicate that further discrimination beyond

rain/no-rain categories is not feasible with a single IR channel discriminant analysis

scheme.
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VI. OPTIMAL THRESHOLD APPROACH

Chapter V showed that discriminant analysis could be used with some success to

delineate rain from no-rain areas. The primary discriminators were IR mean and

standard deviation, although most of the separation was accounted for by IR mean.

These results suggest that a more operationally efficient scheme utilizing an optimal IR

threshold value may yield similar rain/no-rain results. Tsonis (1988) found that a single

VIS or IR thresholding scheme was quite adequate in delineating rainfall from satellite

imagery. Compared to more complicated schemes, little accuracy was lost, and was

more than compensated fo in increased flexibility, speed and economy. The objective

of this approach is to determine an optimal IR threshold value by optimizing a set of

statistical parameters.

A. PROCEDURE

The 512 x 512 pixel arrays of the remapped SSM/I and JR imagery were scanned

with a FORTRAN program on the NPS IDEA Lab. For each oceanic, mid/high cloud

pixel, the rainrate (derived from the SSM/I exponential rainrate algorithm) and

coincident IR value were recorded in a new array. As with the discriminant analysis

approach (Chapter V), analysis is restricted to areas containing mid/high clouds, defined

by an IR value of 153 (253.5 K) or colder (after Negri and Adler 1987b) to increase

computational efficiency and to focus on the overcast rain/no-rain problem.
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An IR threshold value was defined such that any IR value equal to or colder than

the threshold value was assumed to be rain. Threshold values were chosen iteratively,

begining with 153 and spanning the full range of IR values obtained (up to 210). All

evaluation statistics were calculated for each IR threshold. The SSM/I threshold

remained constant - any value equal to or greater than 1 mmvh was defined as rain,

anything less as no-rain.

Given the IR and SSM/I thresholds, all pixels were assigned to one of the four

boxes in the precipitation contingency table, Table VIII (following the classifications

defined by Lovejoy and Austin, 1976). SSM/I classifications are considered to be

"ground truth." Thus, the IR classification's correctness is judged by its agreement with

the SSM/I analysis.

Table VIII PRECIPITATION CONTINGENCY TABLE (after Lovejoy and Austin

1976)

IR Prediction

Rain No Rain

Rain HIT MISS
SSM/IClassification No Rain FALSE DRY

ALARM

The four IR classifications are:

1. Hit - correctly classified as rain

2. Miss - incorrectly classified as no-rain
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3. False Alarm - incorrectly classified as rain

4. Dry - correctly classified as no-rain

Following Donaldson et al. (1975) and Tsonis and Isaac (1985), several measures

of success or error were calculated from this contingency table (see Appendix A for

equations). Briefly defined, those measures are:

1. Probability of Detection (POD) - gives ability of scheme to "find" the rain

2. False Alarm Ratio (PAR) - measures the proportion of incorrect rain predictions

3. Critical Success Index (CSI) - compromise score to balance the need for maximal
Hits against disadvantages of excess False Alarms

4. Percent Error (ERR) - measures the error in ran area delineation over the total
area analyzed

5. Areal Error (AREA) - measures the percent difference between observed (SSM/I
classified) and IR predicted rain areas

B. EVALUATION

The optimal IP. threshold is that value which yields the optimal combination of the

success measures described. A perfect rain delineation scheme would give POD = 1,

FAR = 0, CSI = 1, ERR = 0, and AREA = 0. None of these statistics can be used

alone, however, as none is necessarily more representative of the scheme's success than

any other. Rather, each statistic gives additional information about the effectiveness of

the rain delineation scheme.

For instance, a threshold could create a rain area five times its actual size, and still

give a POD of one. To be meaningful, a high POD should be accompanied by a low
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PAR. CSI takes this into account somewhat, by combining the POD and FAR scores

into a single compromise score. However, the relative costs of Miss (rain under-

predicted) versus False Alarm (rain over-predicted) errors may vary for each operational

user, and should be considered in the weighting of terms in the CSI calculation. For

this study, CSI is calculated assuming equal misclassification costs (i.e. Miss and False

Alarm errors carry the same penalty). Because ERR represents the error in rain area

dlineaion with respect to the entire area analyzed, a good (low) ERR score can be

obtained even with poor POD and FAR scores, if the precipitation area is small. And,

while a low AREA score means that the observed rain area nearly equals the predicted

area in size, the scoring does not mean that the two areas are colocated. Because there

is no one preferred score, all of the statistics should be considered in the development

of a scheme, with emphasis placed on those statistics which suit the needs of the

particular user.

Ideally, the optimal IR threshold would be that which yielded minimum values of

ERR and AREA, and maximum values of CSI. Setting a critical value of POD would

indicate the minimum level of success acceptable in actually "finding" the rain areas.

The following section describes how the optimal threshold scheme fared with Cases A,

B, and C.

C. RESULTS

Figure 14 illustrates how the evaluation statistics POD, FAR, CSI, ERR and

AREA varied as a function of IR threshold value for the three cases studied. As
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Fig. 14 Evaluation statistics POD, FAR, C9SI, ERR and AREA as functions of IR value
for Cases A, B, and C.

expected, POD and FAR scores decreased with increasingly colder IR threshold values

(except in Case B, where FAR scores were nearly constant). It was anticipated that, by

combining the POD and FAR scores into a compromise CSI score, a min/max pattern
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would emerge which allowed determination of the optimal threshold determination at

the CSI maximum. Unfommately, such a pattern was not evident in Cases A and B.

Instead, CSI scores showed a wavering decreasing trend with colder IR threshold values.

Slight relative mins and maxes were apparent, but scores remained nearly constant

below IR counts of 195 (Case A) and 190 (Case B). Case C, however, did exhibit a

modest mn/max pattern. Because the CSI score yielded unexpectedly limited

information, a minimum acceptable POD was established. Such a POD would not only

aid in obtaining an IR threshold value, but would enable comparison of the scheme's

results with those of other techniques. An average POD of 0.62 was obtained from the

discriminant analysis validation data sets in Chapter V. In accordance with this value,

a minimum acceptable POD of 0.60 was established for the optimal threshold analysis.

Figure 15 shows the pattern of the evaluation statistics POD, ERR and AREA for

the three cases analyzed. Statistics are plotted against increasingly colder IR threshold

values. Although one's eye may be drawn to the junction of the three curves as a

choice for the optimal threshold, the goal is to find an IR value that best coincides with

minimums in the ERR and AREA curves and still yields an acceptable POD score.

Table IX is presented to compare the statistical results of the optimal threshold

approach with those of the discriminant analysis approach.
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A, B, and C.

1. Cae A: 13/0901 December 1988

Figure 15 shows clear rminimums for both ERR and AREA scores for Case A. The

ERR curve is relatively flat for IR values below 181, dips from IR values of 181 to 189,
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Table IX COMPARISON OF STATISTICAL RESULTS. Optimal threshold vs.
average (development and validation data) discriminant analysis.

Case Statistic Optimal Discriminant Analysis
Threshold (Devel.) (Valid.)

POD .70 .80 .79
A FAR .25 .09 .08

ERR .33 .20 .20

POD .60 .51 .50
B FAR .50 .25 .40

ERR .48 .42 .48

POD .62 .73 .59
C FAR .44 .28 .50

ERR .32 .29 .42

and then rises steadily with increasingly colder values. The mun ERR score of 0.32

corresponds to an IR value of 189 (229 K). The AREA curve exhibits a V-shaped

pattern, reaching 0.0 at an ER value of 184 (234 K). At this value, IR predicted rain

area is equal to (but not necessarily coincident with) SSM/I predicted rain area. For

lower (warmer) IR values, predicted rain area exceeds observed rain area. The reverse

is true for IR values higher (colder) than 184.

Because no one IR value corresponded to both ERR and AREA mins (189 and

184, respectively), a median value of 186 (232 K) was chosen as an optimal threshold

for Case A. This value is midway between the ERR and AREA min locations and also

corresponds to a weak relative max in CSI (0.57), seen in Figure 14. A POD score of

0.70 is obtained, well exceeding the POD threshold of 0.60. At this IR value, ERR and

AREA scores vary little from their minimums. The optimal threshold is one degree

colder than the mean temperature of the cirrus boxes found in Chapter V (Table V).
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Compared to the discriminant analysis method, the optimal threshold scheme

yielded less satisfactory results for Case A. Besides the obvious differences in statistical

analysis, it is important to note the differences in sampling technique between the two

methods. While the optimal threshold pixels met the same oceanic, mid/high cloud

criteria as the discriminant analysis boxes, the averaging procedures smoothed the data

and allowed for the elimination of rain border areas in the discriminant analysis method.

Additionally, because individual pixels (vs 10 x 10 pixel boxes) were evaluated, the

optimal threshold sample sets were two orders of magnitude larger than the discriminant

analysis sample sets.

2. Can B: 13/2301 December 1988

The ERR curve for Case B is reasonably flat throughout, but fluctuates modestly

for IR values colder than 180. The minimum ERR score of 0.45 is found at the IR

value of 191 (227 K). As in Case A, the AREA curve is V-shaped, reaching 0.0 at an

IR value of 189 (229 K). A reasonable choice for the IR threshold, then, would appear

to be the median value of 190 (228 K). However, this yields a POD score below the

minimum acceptable score of 0.60.

As the slopes of the POD curves in Figure 15 show, higher POD values are

obtained at lower (warmer) IR values. For this case, the threshold was moved to

progressively warmer temperatures until an acceptable POD score was obtained. An

optimal IR threshold value of 186 (232 K) was chosen for Case B, giving a POD level

of 0.60. As in Case A, the choice of a compromise value yields little deviation of ERR
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and AREA scores from their minimums, suggesting a possible "window" of optimal

threshold values. Case B is complicated by the abundance of extremly cold cirrus

associated with the jet stream. Table V showed that cirrus sample means were slightly

colder than rain sample means, indicating that the use of IR value to determine rain area

would be limited in this case. For Case B, optimal thresholding produces superior

results to discriminat analysis. Optimal thresholding was the only scheme able to

produce an acceptable POD level, and although the FAR was higher (in proportion to

the increased POD), ERR scores were held nearly constant.

3. Case C: 4/2101 January 19

Unlike the previous cases, which exhibited nearly flat ERR score curves at low

(warmer) IR values, Case C's ERR scores decrease constantly with colder values until

reaching a minimum value of 0.30 at an IR value of 194 (224 K). The ERR curve rises

slightly at colder IR values. The AREA curve again exhibits a V-shaped pattern,

reaching 0.0 at an IR value of 189 (229 K). As in Case B, all choices of intermediate

JR threshold values (between 189 and 194) yield POD scores below 0.60. The nearest

IR value which yields an acceptable POD score of 0.62 is 188 (230 K). Again, near

minimum values of ERR and AREA are seen at this compromise IR threshold.

Compared to the discriminant analysis (validation data) results for Case C (Table

IX), the optimal threshold scheme produced better (lower) FAR and ERR scores, while

still attaining an acceptable POD. In this case the division between cirus and rain IR
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values is evident and useful. In fact, the optimal IR threshold value of 188 is equal to

the midpoint between the cirrus and rain sample IR means (184 and 192) found in

Chapter V.

In summary, the following steps were taken to determine the optimal IR threshold

value for the cases analyzed:

1. Determine IR value corresponding to minimum Ek.R score.

2. Determine IR value corresponding to minimum AREA score.

3. If IR values are not the same, chose intermediate value.

4. Evaluate POD score for IR value obtained in step 3. If POD meets or exceeds
pre-determined acceptable level, use this IR value as optimal threshold. If POD is
below acceptable level, move to warmer threshold, choose nearest IR value that
yields acceptable POD.

4. Case Comparisons

In comparing the pattern of evaluation statistics in Cases A, B and C, several

features are noticeable. In all three cases, the min AREA score yields a lower IR

threshold value than does the min ERR score. Whereas the AREA curve exhibits a

consistent V-shaped pattern, the shape of the ERR curve varies from case to case. POD

scores decrease with increasingly colder IR threshold values, but the slope of the POD

curve varies with each case.

In none of the cases did a single IR threshold value coincide with sufficient POD

and minimums in both ERR and AREA, so compromise thresholds were selected. The

thresholds chosen were within three degrees Kelvin of the value corresponding to the
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AREA min. Little variation was seen in the ERR and AREA values from their min

values, suggesting that an optimal threshold window exists.

Threshold values of 186, 186, and 189 were chosen for Cases A, B, and C,

respectively. These values correspond to a cloud top temperature range of 229 K to 232

K. Studies by other authors have revealed a variety of threshold values. Negri et al.

(1984) used an IR threshold of 228 K to describe the 50% coldest area (rain threshold).

When using single-value IR thresholding, Negri and Adler (1987b) found their best

results with a value of 240 K, while Tsonis (1988) found that a 245 K threshold yielded

optimal results. It is expected that the value be case-dependent, depending on the

location, development and dynamics of each rain producing system.

While the threshold is valid only for the particular system, it should be applicable

for several hours of GOES imagery. Optimal threshold values were applied to

subsequent GOES IR imagery for the three cases analyzed, yielding rain patterns

consistent with synoptic expectations. Figures 16 through 23 in Appendix B show the

rain patterns obtained when the optimal IR threshold of 232 K is applied to successive

GOES JR imagery for Case A through Case B. The rain area pattern for the Case A

system moves east until out of range of the GOES imagery, while the trailing frontal

band and associated rain is apparent throughout the series. The series shows the

development of the second system and the resulting growth of the rain area.
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D. COMPARISON WITH OTHER STUDIES

Many studies have been conducted to estimate rain area and rate with satellite

imnagery. Table X shows a comparison of several of these studies (including the

analyses of this thesis) and their resulting success statistics. Techniques varied widely,

and rain estimation was computed using VIS, IR, and combined VIS/IR imagery. The

location of the regions analyzed is important, as the dynamics and resulting precipitation

patterns vary greatly between midlatitude and subtropical systems.

Table X COMPARISON WITH VARIOUS RAIN ESTIATION SCHEMES

Author

Lovejoy Tuonis Negni O'Sullivan
& Austin & Isaac & Adler Tsonis et al. Frailey Frailey
(1979) (1985) (19MT) (1988) (1990) (1991) (1991)

Technique Pattern Cluster Threshold Threshold Discrim. Discrirn. Threshold
Recog. Analysis Analysis

Region Montreal Ontario, Southern Ontario. Southeast NE Ad. NE Ad.
&GATE Canada Florida Canada us (ERCA) (ERICA)

Image Size 1.0 1.0 0.6 1.0 21.0 27.6 27.6
(10' kin 2)

No.images 25 18 83 18 330 3 3
examined

Ground Radar Radar Radar Radar Surface SSMII SSMII
Truth Reports

spectrum Both Both VIS IR VIS IR Both JRt Rt IR.
VIS/R/Both Dev Val

POD .55 .66 .98 .88 .62 .60 .81 .68 .62 .64

FAR - .37 .13 .07 .38 .40 - .21 .33 .40

ERR .13 .20 - - .22 .30 .20 .30 .37 .38
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The first four studies listed in Table X each examined 18 to 83 images. Image area

size was approximately 1 x 10' km2, due to the limitations involved using radar as

ground truth. The O'Sullivan group used 30 days of hourly suface data as ground truth,

which enabled analysis of 330 images of an area covering most of the Southeast US.

For the studies in this thesis, only three images were studied. However, the extensive

ground truth coverage yielded by the SSM/I swaths allowed analyses of images with

areas larger than any those of previous studies. Thus, when comparing total image area

analyzed, the two SSM/I studies in this thesis rank second behind O'Sullivan et al., d

are nearly 30 times the area analyzed by the previous four studies. Additionally, the

SSM/I swaths allows analysis of a broad range of latitude and consequent storm

dynamics.

Table X shows that rain area delineation can be achieved with reasonably similar

statistical results by a variety of VIS and IR schemes, including the methods used in this

thesis. The work of Negri and Adler (1987b) and Tsonis (1988) is most comparable to

the analyses presented in this study, in that thresholding using the IR spectral band was

used. Negri and Adler's method gave, by the far, the best POD and FAR scores of all

the schemes presented, but ERR scores were not computed. Considering location,

Tsonis' work in Canada most nearly corresponds to the NE Atlantic area considered

here. Tsonis' method yielded results quite similar to those obtained in this study. One

important difference is that Tsonis' IR threshold was 245 K, where this study found
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thresholds between 229 and 232 K. Additionally, Tsonis examined over-land areas

using radar as ground truth, where this study examined oceanic areas using SSM/I as

ground truth.

Comparison of this study's discriminant analysis and optimal thresholding results

with those from a variety of other studies indicates that oceanic rain delineation success

can be achieved with IR schemes, using SSM/I imagery as ground truth. This is

significant, in that by calibrating GOES and SSM/I imagery to find an optimal IR rain

threshold and updating that threshold as SSM/I imagery becomes available, large scale,

continuous oceanic rain analyses can be completed.
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VIL CONCLUSIONS AND RECOMMENDATIONS

Accurate global precipitation information is required by a wide variety of

disciplines, including military applications. The development of satellite techniques,

particularly rainfall algorithms using the microwave spectrum, has addressed this need.

But the paucity of microwave data limits its usefulness for continuous rainfall coverage.

The purpose of this study was to use hourly GOES IR satellite imagery to delineate

oceanic rain/no-rain areas for three ERICA storms, using 12 h DMSP SSM/1 rainrate

analyses as ground truth.

After applying an exponential rainrate algorithm to the SSM/I data, both SSM/I

and IR imagery were remapped to allow pixel-by-pixel intercomparison. Initial study of

"cloud box" IR values and distribution histograms suggested that rain/no-rain areas could

be delineated using IR mean, standard deviation and kurtosis. In general, rain areas

exhibited colder IR mean cloud top temperatures and larger standard deviation. The

distibution curves for cirrus areas, as described by standard deviation and kutosis,

appeared more Gaussian than those for rain areas.

The three variables IR mean, standard deviation and kunosis were incorporated

into a linear discriminant analysis scheme. The technique separated rain from no/rain

areas within a mid/high cloud region, resulting in an average POD of 0.68 and ERR rate

of 0.30 for development data (0.60 and 0.37 for validation data). Variations of the

analysis revealed that IR mean played the dominant role in rain discrimination. Further
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separation into rain intensity categories had very limited success, suggesting that IR data

alone does not contain sufficient information to discriminate beyond rain/no-rain

categories.

A simpler technique was applied to delineate rain areas with a single IR threshold,

determined by optimizing a set of evaluation statistics. By minimizing percent

misclassification and rain area size errors while maintaining sufficient POD, optimal IR

thresholds were obtained for the ERICA storms analyzed. Thresholds ranged from 229

to 232 K and yielded an average POD of 0.64 and ERR of 0.38. Results were similar

to those obtained by the discriminant analysis approach and schemes by various other

authors.

Several recommendations are made for further development and operational

implementation of these rain delineation techniques. This study assumed no prior

probability and equal mislassification costs in order to allow comparison to other

methods. However, an operational user is likely to have prior information on the

likelihood of precipitation, as well as varying costs associated with over- or under-

prediction of rain. These factors should be included in the development of the

discriminant function or, if thresholding is used, in the weighting of terms in the CSI

computation. This tailoring should improve the POD and ERR scores, and create a

scheme better suited to the specific user.

Comparison with other studies shows that the choice of IR threshold is dependent

on the location and dynamics of the storm system, and should be defined for each storm.
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Evaluation of the techniques discussed here over various oceanic areas, latitude bands,

and storm types may reveal generalized thresholds to use as starting points for analysis.

This study restricted analysis to areas containing mid/high clouds, as defined by a 253

K screening threshold. While little SSM/I rain was associated with warmer clouds for

the cases studied, the situation will differ for various locations and storms. It is critical

that the screening threshold used be warm enough to include all precipitation events

associated with the particular analysis area.

The main factor complicating the schemes used was the limited skill of IR in

eliminating areas of cold cirrus clouds. This situation could be improved by inclusion

of additional satellite data channels into the scheme. VIS data may be the simplest to

incorporate, but is limited to daylight hours. Neu (1990) successfully identified cirrus

with a split-window scheme, where a high brightness temperature difference (BTD)

between AVHRR Channels 4 and 5 was attributed to the ice crystal emissivity and water

vapor content of cirrus clouds. Any additional data to be included must be coincident

in space and time, and would require image rectification.

Oceanic precipitation delineation is of significant importance to naval operations.

Aviation interests and ship-based weapon systems operations are critically served by the

knowledge of rain area location and intensity. A refined operational version of either

precipitation delineation scheme presented here could be incorporated into the latest

version of the Navy's Tactical Environmental Support System (TESS(3)) (Phegley and

Crosiar 1991). Because of the differences in satellite platforms and scan modes, both
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modes, both thresholding and discriminant analysis schemes require initial remapping

of SSMI and IR imagery. While thresholding is inherently a simpler operation, the

repetitive computations required for each potential threshold increase its run time.

Discriminant analysis requires more initial data preparation, but the discriminant

functions themselves can be quickly obtained using the statistical packages available

with TESS(3). Thus, both methods are competitive with respect to computational

efficiency and results. The utilization of SSM/I imagery to determine rain area

delineation functions or thresholds for GOES IR imagery can significantly enhance the

acquisition of continuous, real-time global precipitation data.,
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APPENDIX A. STATISTICAL PARAMETERS

The statistical parameters used in this study are based on the work of Donaldson

et al. (1975), Lovejoy and Austin (1979), and Tsonis and Isaac (1987). These

parameters have become the unofficial standards for use in prediction of rain and various

other meteorological phenomena. The parameters incorporate the use of four categories

defined by the precipitation contingency table, Table XI (listed previously in Chapter

VI as Table VII).

Table XI PRECIPITATION CONTINGENCY TABLE (after Lovejoy and Austin
1976)

IR Peiton

Rain No Rain

SSM/ Rain HIT MISS
Classification No Rain FALSE ALARM DRY

Two rain area definitions are made:

1. GOES RAIN - HIT + FALSE ALARM

2. SSMI RAIN = HIT + MISS
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From these definitions, the statistical parameters used in this study are:

1. Probability of Detection (POD):

POD HIT

SSMI RAIN

2. False Alarm Ratio (FAR):

FAR = FALSE ALARM
GOES RAIN

3. Critical Success Index (CSI):

car =HIT
CSI MI

HIT + MISS + FALSE ALARM

4. Percent Error (ERR):

ERR = MISS + FALSE ALARM
HIT + MISS + FALSE ALARM + DRY

5. Areal Error (AREA):

AREA = SSMI RAIN - GOES RAIN
SSMI RAIN
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APPENDIX B. APPLIED OPTIMAL IR THRESHOLD

Fig. 16 GOES IR imagery for 13/0901 December 1988. Black area
represents reipitation as deteined by optimal JR tduvsold of 232 K.

Fig. 17 As in Fig. 16, except 13/1101 December 1988.
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Fig. 18 As in Fig. 16, except 13/1301 December 1988.

Fig. 19 As in Fig. 16, except 13/1601 December 1988.
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Fig. 20 As in Fig. 16, except 13/1901 December 1988.

Fig. 21 As in Fig. 16, except 13/2101 December 1988.
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Fig. 22 As in Fig. 16, except 13/2301 December 1988.

Fig. 23 As in Fig. 16, except 14/0101 December 1988.
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